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ABSTRACT

An approach to sequential design for estimating the root of a nonlinear

equation is described. It sets the next design point at the current estimate

of the parameter via a parametric model and maximum likelihood (or other

efficient) estimation. For normal, binomial and Poisson errors and their

respective canonical link functions, it is close to the Robbins-Monro

stochastic approximation and thus enjoys the latter's robustness against the

misspecification of the link function. Some new variations of the Robbins-

Monro scheme are obtained as a consequence.
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SIGNIFICANCE AND EXPLANATION

When the saving of sample size is an important consideration, sequential

design of experiments is often used. By efficiently utilizing the information

in the past experiments, it determines how the next experiment should be

conducted. Statistical theory for sequential designs has been developed for

normal and binomial variations. For the problem of determining the solution

of an unknown nonlinear equation, we have developed a class of sequential

design procedures that can handle very general variations described by the

generalized linear models. In special cases it includes a new adaptive

version of the Robbins-Monro stochastic approximation and a maximum likelihood

recursion scheme for quantal responses. Its relation to the stochastic

* approximation and the role the link function plays are studied. Theoretical

issues such as consistency, robustness, asymptotic normality and second-order

properties are discussed.
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MAXIMUM LIKELIHOOD RECURSION AND STOCHASTIC
*

APPROXIMATION IN SEQUENTIAL DESIGNS

C. F. J. Wu

1. INTRODUCTION

We are interested in efficient sequential designs for estimating the root

of an unknown nonlinear equation, where the distribution the responses is

quite general (continuous or discrete). The proposed *oach is based on

design updating with the maximum likelihood estimate vi parametric model.

It is dubbed the maximum likelihood (ML) recursion appro h. In several

important situations it is shown to be closely related to the stochastic

approximation approach of Robbins and Monro (1951).

The problem can be described as follows. The response y is related to

an underlying "design" variable x. Denote the mean of y at x by M(x),

which is unknown to the experimenter. Of special interest is the solution

x* to the equation M(x) - p. In bioassay x* may be an effective dose

levelt in control system x* may be an optimal input level. Usually the

distributional form of y is roughly known, e.g., binomial in bioassay.

Denote it by f(yle). The parameter 0 is related to x via a link function

unknown to the experimenter. For univariate x, our approach starts with

assuming a parametric link function e - g(Ax - a) with g known. An

efficient estimate (X ,an) of (X,a) is obtained based on the first n

observations via the assumed model f and g. Under f and g, E(ylx) is

To appear in "Adaptive Statistical Procedures and Related Topics" (J. Van
Ryzin, ed.), 1986.
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a function of a and X, denoted by H(xla,X). It is typically monotone

in x. The ML recursion chooses the next design xn+ to satisfy

H(x n+1la n ) = p. The procedure can be repeated indefinitely. The idea was

first studied in Wu (1985) for binary y.

In Section 2 this approach for normal error and inear link function is

shown to yield a nonadaptive Robbins-Monro (RM) stochastic approximation (1)

if X in the preceding description is fixed. For a and X unknown, it

leads to a variation (11) of an adaptive RM scheme. The new scheme (11) has

the same first order asymptotic behavior as the adaptive RM. But the second

order behavior, yet to be investigated, will probably be different. The RM

scheme, without any knowledge of M, has desirable asymptotic properties

under weak conditions on M. This robustness is therefore shared by the ML

recursion, although the latter is based on the assumption of a possibly

incorrect link function g(Xx - a). Its robustness, in the case of

binary data with logit link, is shown to stem from the iteration step

H(x Ia n' ) = p . See (16) and (17). Section 3 contains other resultsn+' n

that link the two approaches. A general description of the ML recursion

approach for generalized linear models is given in Section 4. Canonical link

functions are recommended. In the case of Poisson variation, the ML recursion

based on a canonical link is equivalent to a version of the RM recursion

(1). This connection enables us to study the asymptotic behavior of the ML

recursion. The paper concludes with the pros and cons of the ML recursion

approach relative to the RM recursion approach and points out potential gains

in relating the two approaches. No rigor is attempted throughout the paper.

-2-
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2. ROBBINS-MONRO PROCEDURE AND ITS VARIATIONS VIA LEAST SQUARES RECURSION

In their pioneering paper Robbins and Monro (1951) proposed the following

recursive scheme
c

(1) Xn+1 ' xn -- (Yn - p )
n

for estimating the solution x* of M(x*) = p, where the observation y

taken at xn  satisfies y = M(x) + e with E(e) = 0. The scheme does not

assume any knowledge of M, which is typically unknown. Under weak

conditions on M and e, xn  is known to converge to x* with probability

one as n + - (Robbins and Siegmund, 1971) and to be asymptotically normal

(Sacks, 1958). The optimal choice of c for minimizing the asymptotic

variance of xn  is (M'(x*)) - , M'(x*) 3 0.

The Robbins-Monro (RM) scheme (1) can be interpreted as a recursive

scheme with least squares updating. Let us make a tentative assumption that

2
y=i + Ox + e and the errors c have mean zero, variance a and are

uncorrelated. First we consider the simple case of known 8. For solving the

linear equation a + Ox = 0 (p i' zow zero), The parameter of interest is

8 = - B/. Eased on the first n observations, the least squares estimate

(or the maximum likelihood estimate if the errors are norinal) of a is

a n - Yn

(2) 0 . . . × -
n 8 n 8

where x and y are respectively the means of x, and y,, i = 1(1)n.nn

If the next observation Yn_ is taken at the current estimate 0 of 8,

*. the recursive relation

SYn

(3) xn+ I  n 
= x n

obtains. It is easy to see that (3) is ejuivalen'. to

-1(4 x --2-- (Yn - ),

-3-



-1
which is the RM recursion (1) with c = . This equivalence was pointed out

by Lai and Robbins (1979). It is a significant step since it connects two

seemingly distinct approaches to the design problem outlined in Section I.

The approach that leads to (3) is parametric in that it is motivated by a

linear function that links E(y) and x and, to a lesser extent, by the

normality of errors (which makes the least squares estimator fully

efficient). On the other hand, the stochastic approximation approach (4) is

nonparametric in that its asymptotic performance is very much independent of

the knowledge of M(x). The assumption y = a + 8x + e is useful for

motivating and generating design procedures. The validity and performance of

the resulting design are nonetheless independent of the assumption.

So far we have assumed that the slope parameter 8 is known. For

,.. unknown 8, what recursive scheme will the least squares updating approach

*7 lead to? Here

a n Yn
(5) n x 88(5) Xn+1 = On n

Bn  an

and

A n n 2
(6) Bn = Yi(xi -X n) / (x. -x )n

is the regression slope estimate. From (5) and (7)

* (7) x n x + (x - x )/(n- 1) =x n 1 + (x -x )/n,n n-i n n ni n n-i

we have the following recursive relation

- - - (9/A - Yn 8A

Xn+1 Xn = Xn Xn-1 - (Yn/an - Yn-/n-1I

(8) = (xn -X n 1 )/n + yn 1 /an 1 - /6n

)= i - " n 1/,n -

The last equality follows from (5) with n replaced by n - 1. By using (7)

'-4-
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for y, this equals

(9) (1 - ;)yn-m n-11 - n Yn/

It remains to derive an explicit form for the first term of (9). From (7.2.7)

of Goodwin and Payne (1977),

n-1
x n 1 (Xn -xiMy n -n-1 1 (x n n-

n n-1 - -- 2 n-1 2
(n -1)E 1  (xi - n-1 + E1 (xi Xn

(n- )x n - Xn)Yn

nEn(xi - 2 d n-1

The second equality follows from (5). Therefore

0 - , 1 1 n - --
-Yn-I ---- -) " n Yn-1 1

n-1 On 8n-18 n

Yn yn-1 (n - )2 X - Xn- 1

(10) = n X)
no n - n (x - 2

n n-1 l 1i n

2 -A2
yn ii n O 1

The last equality follows from (5). From (8)-(10) follows a new recursive

scheme
A-i 2- 1/ 2

*._ n (n-i (1 ini1]Y

(11) xn~ X - -o + (n Y-1 2-)l
-(1 n+1 = n "n [I + n (x -n )2 -  n

If the second term inside the square bracket is ignored, (11) reduces to

0 the RM recursion (1) with c = 8n  and p = 0. Such an adaptive procedure

n
with proper truncation on $8 was shown (Lai and Robbins, 1981; Anbar, 1978)

to have the same minimal asymptotic variance as the optimal choice

c "M'

%-5-
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We now study the order of magnitude of the "correction term"

(n - A)(n1 n1 2

(12) pn mak-e ; : 12i

nE n(xi  )2
1 n

which, being positive, makes the adjustment Ix n-11 -xn in (11) bigger than

that in the adaptive RM scheme mentioned above. One can argue heuristically

from the results of Lai and Robbins (1981) that (n - 1)( n-1) 2 = Op(1),

n n ) 2 = Op(log n). The correction term (12) is8n + M'(x*), and 1 x ) n

therefore of the order 0 p((log n) -1). We conjecture that the scheme (11)

with proper truncation on the coefficient of n-1 Yn has the same limiting

distribution as the optimal RM scheme (1) with c = (M'(x*))- I and the

adaptive RM scheme (1) with c = an  If yi is related to xi by the

simple linear regression model yi = a + 8xi + ei, this was established in

Lai and Robbins (1982) with a different truncation scheme. What the

correction term (12) does to (11) is in the lower order terms. Expand the

mean square error of xn as

" 2 = a a2
(13) E(xn - x* += 1+2 + lower order terms,nl n

n

where bn + a as n + c. The a1  term is the same for the three

procedures, while the a2  term may differ. Since the scheme (11) is based on

the least squares estimator, it may be second-order optimal (in an appropriate

sense) for nearly linear M(x) and normal errors. Second order asymptotic

results, currently unavailable in the literature, may provide further insights

into those small or moderate sample phenomena not readily explainable by0
first-order theory. Such results are found in section 6 of Wu (1985). Of

course, small sample behavior depends on the location of initial observations.

-6-
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The correction term (12) is non-negligible only for small or moderate

n when log n is not large, lyl >> 0, or x1 ,...,x n are not wide-spread.

To make the scheme (11) more robust against poor choice of the starting

value x0 and the motivating linearity and normality assumptions on M and

, the correction term (12) should be made less dependent on the remote

- -2
past. Such can be achieved by replacing Yn-l' On-1 and Z(x - n in

(12) by weighted versions with more weights on recent observations.

1J
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3. MAXIMUM LIKELIHOOD RECURSION IN BINARY EXPERIMENTS

In a binary experiment the outcome y is denoted by 1 (response) or 0

(nonresponse). The probability of response is related to a stress level x

(at which the experimentation is performed) by

M(x) = Prob{y = 11x } = E(ylx)

It is often of interest to estimate the percentile x* of M(x), i.e.

M(x*) = p, 0 < p < 1. The problem is that in practice the form of M is

, '.often unknown. For expensive runs, sequential experimentation, if feasible in

practice, is called for since the data can be collected and used in a most

effective way. For related comments, see Wu (1985).

The maximum likelihood (ML) recursion approach starts with a parametric

model for the unknown M(x). First we consider a one-parameter model

H(x - a) with parameter a and H known. For estimating the 100pt

percentile, H is chosen to satisfy H(0) p. That is, if H is the true

model, a is the 100pth percentile of M. The log likelihood for the first

n observations is

n n

L Yi log H(x i - a) + [ (1 - yi)log(l - H(x i - a))
11

The maximum likelihood estimate n of a satisfies the equation;. n

n H'(x. - a) n H'(x. - a)
X -. 1 1~

' Yi H(x. - a)(1 - H(x. - a)) 1 - H(x. - a)

By writing
K x)"= H' (x)

A. KWx
H(x)(I - H(x))

S the above equation can be expressed as a weighted normal equation

v n n
y" - ) = H(x - n )K(x i -''"1 1

-8-
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According to the ML recursion approach, the next design xn+ 1 is chosen

to be the current estimate a of a and the preceding equation becomesn

n n
(14) yiK(xi - xn 1) n + H(x i - Xn+I)K(xi - Xn+ )

1 1

To obtain a recursive relation between Xn+1 and Xn, (14) gives

n

[H(x i - xn+I)K(xi - Xn+1) - H(xi - xn)K(xi - xn)] + pK(O)
1- 1

n
S Yi[K(xi - Xn+i) - K(xi - Xn)] + YnK(O)

n
y yiK'(xi - xn)(x n - Xn+1) + YnK(O)

1

Unless K' 0, xn+1 - xn depends on all the past xi and Yi" Recall that

the RM recursion depends on the past {yi} through yn o Only when K' = 0,

Xn+1 - xn behaves more like the RM scheme in this regard. Note that

1 -cx -1
K' - 0 iff H is of the logistic form (1 + (i- 1)e ) . Another

-* advantage of the logit-based ML recursion design is that it is less

susceptible to poor choice of initial observations than the probit-based

procedure (Sellke, 1986).

Without loss of generality, assume c = 1. For the logit assumption,

equation (14) takes the form

n n -(xi-X i  ) -1

which yields the recursive relation

= n d~e-(xi-x n ) -(xi-xn++i d~e - e +p

Yn " -(x -Xn) -(x -x n) p
(I + de n)(1 + de i n+1

or equivalently,

%.9-
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n de n i exn+1-Xn
(15) de= Y(- - e

n-Xi  xn-x i x nl-Xn1(1 + den )1 + de e )

1

The special case p = - was given in (13) of Wu (1985). The recursion (15)
v-2

defines x,+1 - xn implicitly as a nonlinear function of yn - p and
4 n

{xi} 1 . It is qualitatively similar to the RM scheme in two regards. It

pushes xn  in the "right" direction, i.e., Xn+1 - xn has the same sign as

p - Yn" The step size IXn+1 - xnj gets smaller as n increases (and

eventually at the rate n-1).

The ML recursion approach can also be applied to the two-parameter

logistic model. The Xn+ i and xn obtained in this manner cannot be related

in an exact manner like (15). By using linear approximations, it was shown

(Wu, 1985) that Xn+1 - xn can be approximated by the adaptive RM scheme (1)

with c = 8 • On the other hand, a one-parameter model does not lead to a
n

recursive scheme asymptotically equivalent to the adaptive RM scheme. This

point should be clear from the discussion in Section 2, (3) and (4). For

binary data, the recursion (15) based on the one-parameter logistic model

again can not be approximated by the adaptive RM. This is because the slope

parameter in the two-parameter model plays the role of the regression slope

parameter 8 in the adaptive RM. Without a consistent estimate of the slope

parameter, first-order optimality of the ML recursion in terms of minimizing

a1  in (13) cannot be achieved.

The logistic model has a unique place for binomial data in that its

: likelihood equation resembles the normal equation in linear models. For

generalized linear models to be discussed in Section 4, this unique role is

played by the canonical link function.

Since the RM recursion has desirable asymptotic properties under weak

conditions on M and the ML recursion can be approximated by a version of

-10-
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the RM scheme, this nonparametric property may be shared by the ML

recursion. In the following we will use the logistic model to explain why the

ML recursion approach, apparently model-based, is robust against model

misspecification. The following argument is taken from Wu (1985). The

likelihood equation for a is

n n -x+a 1
(16) n 1  Yi = n - H(xiI nIn),H(xla,X) -(1 + e•

1 1

Make a rather strong assumption that &+ a*, c n + A* uniformly so that
.n n

Xn+1I which satisfies H(x n+1 n,) - p, converges to a constant w. ThenXn+n,

*ML recursion, based on the H function, is robust if w satisfies

M(w) - p. Recall that M is the unknown true response function which may be

different from H. For continuous M, the left side of (16) converges to

M(w) a.s., since each yi is binomial with probability M(xi). This side

does not depend on the H assumption. The right side of (16) converges to

H(wIc*,A*) = lim H(xn+1I nt n ) = p. Therefore M(w) = p. The right side,

though starting with the H assumption, turns out to be equal to the

constant p because of the recursion step

(17) H(xn+ 1 an'n) = p,

which is recognized as the source of robustness of the ML recursion

approach. In other words, a possible misspecification in H is "undone" by

the recursion step (17). This robustness claim may not hold for the

estimation of other parameters such as the slope of M at x*.

Another interpretation is that the assumed model H is locally valid

in x, whatever the true "global" model is.

0-. ,

-11-
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4. EXTENSIONS TO GENERALIZED LINEAR MODELS

The ML recursion approach to sequential design can be applied to very

general variations described by a generalized linear model. The response y

has a density function

exp{(y - b(e)]/a(T) + c(y,V)}

for some functions a,b,c. If p is known, this is an exponential family

-with canonical parameter e. The response y is related to the variable x

through a link function n : 0 + n(O) such that the n scale is linear in

x, i.e., n = Ax - a. Typically the link function is unknown. The mean

response M(x) = E(yix) is

M(x) = b'(e) = b'(n- (xx - a)) •

Without knowing M, we assume a link function E:e + C(B) so that

Ax - a and the mean response function is

H(xca,X) = b'(e) fi b'(1 (Ax - a))

where - is the inverse function of E. The likelihood equation obtained

by differentiating, with respect to a and A,

Syil(Ax -xa) = [ b(E-1 (xi - a))

is, by writing =P,

( - a) H(xilaX)p'(Xxi -" '. (18)

SxiYip'(Xx i - 0) = 1 xiH(xjla,x)p'(Xxi - 0)

* If V1e) = e, I yi and I Yixi are the sufficient statistics for a and

A and (18) resembles the normal equation in linear models. Such a link

function is called a canonical link (McCullagh and Nelder, 1983). For

N(,a , (u) = V is the canonical link; for binomial with probability

p, the logit function E(p) = log[p(1 - p)- 1 is the canonical link and
-.- Ax+x)-1

.(p) Ax a gives the logistic function p = (1 + e ) . Without

-'.i

-12-
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a priori reason for choosing other H functions, the canonical link function

is a convenient choice for the ML recursion approach.

For estimating x* with M(x*) - p, where p is in the range of the

mean b'(8), the ML recursion works as follows. Let an and k be a

solution to (18) based on the first n observations. Take the next

observation Yn+j at Xn+1 satisfying

H(xIn+ 1 1 In n ) - bx 1 (l nxn+i - "n)) p

In the next section, we shall study another special case, the Poisson

distribution.

-1
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5. SEQUENTIAL POISSON EXPERIMENTS

Examples of Poisson variation include radiation counts and number of jobs

arriving in a period. The associated x variable may be the distance to the

source of radiation or the parameter specification of a queuing system.

Here y is a Poisson variable with mean U. To estimate x* with

M(x*) = E(ylx*) = p, we assume a canonical link with one parameter, i.e.,

(19) p(ylp) - exp(y ln V - V), ln p = x - a .

The mean response function according to (19) is H(xlc) = ex. The parameter

of interest is x satisfying H(xla) = p, i.e. eX = pe . By solving the

equation

n [Yi(xi - a) - e ] = 0

we obtain the maximum likelihood estimate n of a, through

-1 n n x.e n= I y i IeI

If the next design Xn+1 is chosen to satisfy H(XnII ) = Pi

x a n x. nXn+1 n 1 1
(20) e n pen p e / i

Equation (20) for n and n - 1 gives
n n n- i n-i x.

x e Yi YnE e p-y
e -e p n n-1 P

-Y y. i y. - n

or equivalently,

(21) e = fl -e (Y n - p), c-= ( n [  y )(p e )
n n n

x
Equation (21) is an RM recursion in the transformed scale e

By rewriting the ML recursion as an RM recursion, we can draw on the rich

literature on the asymptotic results of the latter procedure. The remaining

-14-
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section is devoted to a heuristic study of the limiting behavior of (21).

Assume that xn converges to a constant z0. From the martingale strong law

of large numbers,

I1n  ! n

(22) I y i n 1(x I ) e .(+ M "

Similarly, by letting n + a on both sides of (20),
z0

ez0  6 p 0
a -z -1 0 )

implying that M(z 0) - p and z0 - x*, that is xn is asymptotically
x

consistent. The asymptotic variance of e nto ex depends on the limiting

value of cn in (21). From (20) and (22),

-1 Z0 -x*
C n +(z 0)e - pe°n0

which is not equal to K(x*) and therefore the scheme (21) does not have

minimal asymptotic variance. A rigorous treatment of the consistency and
x

asymptotic normality of e n in (21) is desired. A general result of Sellke

(1985) may be applicable.

I N



6. CONCLUDING REMARKS

The ML recursion approach to sequential designs is based on ideas well

known to statisticians. It is intuitively appealing and easy to understand,

although the stochastic approximation is slightly easier to implement. It is

applicable to very general distributions. Special features such as

discreteness or boundedness of the data are taken into account through a

proper choice of the likelihood. In several important situations, it is very

close to the RM recursive scheme (with varying choice of the constant c) and

thus shares the latter's robustness against misspecified link function. If

the assumed model is correct, it is asymptoticaly efficient and may also

perform well in small samples as the maximum likelihood estimator often

does. Wu's (1985) simulation results for binary data suggest that it may be

superior to the RM recursion in small samples.

*1 Its major problem thus far is the lack of rigorous theory on its

asymptotic behavior. An attempt has been made by Sellke (1985). Here its

linkage to the RM scheme pays off. By rewriting it as an RM-like scheme and

r suitably bounding the constant c in (1), simple proofs of its asymptotic

properties may be obtained by drawing on the vast literature on the RM

scheme. Another gain due to this linkage is in the choice of stabilizing

constant. Adaptive versions of the ML or RM recursion, though asymptotically

optimal, may not perform well in small samples because of the instability

caused by adaptation. Stability can be achieved by putting a bound on the

constant c in (1). The simulation results of Wu (1985) demonstrate the

0effectiveness of this device in reducing the small-sample mean square errors

of both procedures. Cross-fertilization of the two approaches may lead to

further understanding and results.

-16-
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